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The dynamics of proce:~es accompanying a loss of stability in a mechanical system are investigated. The mechanical system is 
in the form of an elastic rod, stretched by an axial load, with one of its lateral surfaces "glued" to a rigid wall. The "glue" is a 
low-strength elastic mal:erial which is subjec~t to brittle fracture at a certain value of the load acting on it. In a fractured segment, 
the rod surface slides e~,er the wall surface under the action of a dry friction force which is less than the breaking stress. The 
high sensitivity of the process of the development of instability to small perturbations which initiate the development of instability 
is established. The system considered is the simplest model of the zone of contact between lithospherie plates which generate 
earthquakes. O 1997 E]~vier Science Ltd. All rights reserved. 

Ideas [1] on the mechanism by which earthquakes develop associate the quick release of the elastic 
energy of rocks at the seismic centre with the onset of instability of the mechanical state of the deforma- 
tion zone during the slow accumulation of this energy at the earthquake "preliminary" stage and with 
the subsequent fracture process which occurs there with the emission of elastic waves. Unfortunately, 
the numerous hypotheses which exist at the present time concerning the "action" of the seismic centre 
have not been refined to provide quantitative mathematical models which would enable one to calculate 
the details of the process in the deformation zone. A simple mechanical system has been proposed in 
[2] which simulates the details of the process by which instability develops at the seismic centre. Various 
features of the development of instability are investigated below using this model. 

1. We consider at mechanical structure consisting of an elastic semi-infinite rod which is "glued" at 
a finite section of its length to a rigid fixed base (Fig. 1). A (compressive or tensile) force is applied to 
the rod at infinity as a result of which fracture of the "glue" can occur in the zone where the bar is 
glued to the base. This construction is the simplest model of the so-called Benioff zone where one 
lithospheric plate (1) moves under a second plate (2) and, in the region where they come into contact 
(the hatched region), the material binding them fractures with the release of elastic energy (an 
earthquake occurs). 

We will study the problem of the mechanics of this structure. The left-hand end of the rod (x = 0) 
is assumed to be fi'ee while a specified force (stress) P is applied at the right-hand end where x = ~. 
In this case, the sy~;tem can be in equilibrium. 

We will confine ourselves to considering the one-dimensional longitudinal displacements of the rod 
w(t, x) and we can write the equation 

O2w Do x 
po~--~-=-~-x- D, x#O, O ~ x ~ L ;  x=O, x>L (1.1) 

t~ = E o w  (1.2) 
Ox 

for determining these displacements with a certain approximation. 
Here P0 is the density of the rod, o --= o~ is a component of the stress tensor in the rod, x is the shear 

stress in the interlayer (in the "glue") between the rod and the rigid base and on the boundary of the 
rod, D is the rod thickness and E is Young's modulus of the rod material. 
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It is assumed that the stress x is proportional to the shear strain in the layer T = w/h (h is the effective 
thickness of the layer) for values for I x I which are less than a certain critical value x, (or for values of 
I Y I which are less than T')- 

x = c,~,, o-<i¥;< +. (1.3) 

When [ "c I reaches the value x,, brittle fracture of the material in the layer occurs. The shear 
stress x is subsequently determined by the law of dry friction, and it is constant in modulus and equal 
to x.. 

~w 
x=sign(u)x, , ,  x,. =const, u ~t (1.4) 

An equation in the displacement w can be obtained from (1.1)-(1.4) 

~2w a2 ~2w f_d_ 
- • x,#O, O<~x<~L; x=0,  x > L ;  a = ~ l  ~ -  (1.5) 

~t2 ~-~'Y= po D '  ~p0 

Here a is the speed of sound in the rod material. 
The boundary condition on the left-hand free end of the rod specified in the form 

3 w l ~ x = O ,  x = 0  (1.6) 

We will treat the ease in which elastic waves are only emitted at the right-hand end of the glued segment 
of the rod (x = L) into the domain x > L, that is, no perturbations from this domain arrive at the 
boundary x -- L. This enables us to confine the treatment of the problem solely to the domain 0 ~< x 
~< L. In this ease, the boundary condition at x = L can be reduced to the form 

E OW _ ~w 
-~t  + a~:-~-x = aP, x = L  (1.7) 

We now introduce dimensionless variables using the formulae 

x = L x ' ,  t= t ' to ,  t o = L l a  , W=WoW" , w o = P o L I E  , 

p = pop, , a2 ffi L2G po 2 = ~2 hE "c,, 
DEh ' - ' ~  ' q = ~, 

O" = Po 0' '  

2. We will consider the static problem in the case of a static load P = Pst- Its solution w = Wo(X) satisfies 
the following system of equations and boundary conditions (henceforth, the prime will be omitted in 
Section 2) 

O2w / ~tx 2 = ot2q~(w), 0 ~ x ~< 1 (2.1) 

~¢ ' lc}X=0,  X = 0 ,  ~WlOX=Pst, x = l  (2.2) 

In the domain where the condition 0 ~< w < 1/a is satisfied, the function O(w) = w and Eq. (2.1) has 
the form 



Modell~ing of the development of mechanical instability in fracturing systems 1019 

02w / Ox 2 = tx2w (2.3) 

At a place where fracture of the material in the interlayer has occurred, the function ~(w) = ou/signPst 
and Eq. (2.1) has the form 

02w / Ox 2 = txqsign P,, (2.4) 

The solution of boundary-value problem (2.1), (2.2) is constructed differently for different values of 
P t. 

If I/'st I < th ~ the interlayer material is not fractured over the whole segment of the rod 0 ~< x ~< 
1 and, for the solution Wo(X), we have 

chor  
w°(x) = " ¢tshcx 

If Pmax I> I Pst I ~> th a (the value of Pmax will be determined below), the solution wo(x) exists but the 
material of the interlayer is fractured in the domain x~ < x ~< 1. In this case, the stress I a I decreases 
monotonically from I a I = 0 when~x = 0 to I (r I = I Pst I when x = 1. When 0 ~< x < xl, the distribution 
Wo(X) is determined by the solution of Eq. (2.3) and, when xl ~< x ~< 1, by the solution of Eq. (2.4). The 
value of xl depends on the magnitude of I Pst I and is determined when solving the problem. When x = 
Xl, the stress and strain continuity conditions 

Wo(X-O)=wo(x+O)=lla, ¢~(x-0) = a(x  +0) 

must be satisfied. 
In this case, the solution of boundary-value problem (2.1), (2.2) has the form 

c h o r  
w = sign P,,, 0 <~ x ~< x t (2.5) 

otchor  I 

wffi{laq(x2-x2)+(lPal-czq)<x-x,)+l}sign~t 

x t < x ~ !  

(2.6) 

The magnitude of xl is defined by the equation 

thttxl + tY.q(l - x l )  = IPul (2.7) 

An analysis of Eq. (2.7) shows that a maximum value of the load I Pst I = Pm~x exists and, when this 
is exceeded, no solution of the boundary-value problem exists. The value of xl = Xlm > 0 corresponds 
to the value of Pmax. Pmax and Xlm are defined by the expressions 

P.~ = tho r , .  + ou/(1-x~.) 

a vq ) 

(2.8) 

(2.9) 

A real root Xlm exists if the inequality q < 1 is ~tisfied. 
The case when the root Xlm lies in the interval [t3, 1] is the most interesting. In this case, the static 

diagram/)st - ~ (~ = 1 - x  0 has a "stable" branch (where dPst/d~ > 0) in the range 0 ~ ~ ~< 1 -Xlm and 
an unstable branch, that is, a branch with dPst/d~ < 0, when 1 - Xl,, ~< ~ ~< 1. 

To estimate the values of the dimensionless parameters o~ and q, which determine the solution of 
the problem, we shall take the following orders of magnitude: E = 3 x 1011 N/m 2, G = 101° N/m 2, 
x. = 6 x 10 6 N/m 2, x.. = 0.5x., P0 = 4 x 103 kg/m 3, L = 3 x 103 m, h = 103 m and D = 5 x 10 4 m. With 
these values of the parameters, we have o~ = 7.746 and q = 0.5. In this case, Pma~ = 4.1394 andXlm = 
0.113. It is easily seen that, as oc increases, the  instability domain contracts. The values of/ 's t  and, 
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correspondingly, Pmx simultaneously decrease. At a fixed value of a,  a decrease in q enlarges the 
instability domain with a simultaneous decrease in the value of Pmax. 

3. As has been stated above, the static diagram Pat - ~ (~ = 1 - x l )  has an unstable branch when 1 - 
Xlm ~< ~ ~< 1. This branch is unattainable under static conditions, and the introduction of small 
perturbations into the system when I Pat I = Pmax leads to dynamic fracture, that is, to a rapid propagation 
of the fracture front ~ = ~(t) from 1 -xun  to 1 with the emission of an elastic wave into the domain x 
> 1. In the ease of the stable branch, the introduction of perturbations must not lead to any substantial 
change in the state of the system. 

A program was written for calculating unsteady problems for the system of equations and boundary 
conditions (1.1)-(1.7) in order  to investigate dynamic fracture processes. 

When P = /'max, three types of perturbations were introduced into the system: computational 
perturbations arising from discretization and perturbations of  the form 

o(O,t)=ooe(t); e( t )=0 ,  t < 0 ;  e ( t )= l ,  t ;~0  (3.1) 

o(0, t) = o 0 sin cot / t o (3.2) 

It was found that a dynamic process in which instability is "obtained" actually did occur in all cases. 
In the case of  fracture from computational discretization perturbations, the velocity of motion of  the 
discontinuity at the initial stage of fracture is inversely proportional to the number of  subdivisions (it 
falls when there is a reduction in the magnitude of the perturbations) and the curves become similar 
to one another at the final stage of fracture. 

The relation ~(t/to) is shown in Fig. 2 for the case of fracture arising from perturbations of the ~ (3.1) 
(curve 1) and (3.2) (curve 2, to = 1, and curve 3, to = 40) for a = 7.746, q = 0.5, o0 = -5, o0 = -5 x ll)--2P0 and 
a number of subdivisions N = 1000. In this case, the external perturbations are more than an order of magnitude 
greater than the computational perturbations and the latter have practically no effect on the fracture process. 
Three stages can be dearly distinguished in the fracture process: aRer a brief initial stage, which is determined by 
the amplitude of the perturbation, a state develops with a velocity of the fracture front that depends on the form 
of the perturbation which alternates with separation which serves as the final stage of progressively accelerating 
fracture. 

We calculated the relations u = u(L, t) (u0 = w0/t0), t~ = a(L,  t). These define the elastic wave u = 
u ( x -  at), a = 6 ( x -  at) which is emitted into the domain x > L, that is, the "earthquake". Calculations 
were carried out for P = Pmax, t~ = 7.746, q = 0.5. A perturbation in the form of (3.2), t~0 = -5 x 10 -2 
P0 was specified at the left-hand end (x --- 0) for various values of co. Note that, while the velocity u at 
the left-hand end, varying harmonically takes values of both signs, the velocity u at the right-hand end 
only has positive or zero values. 
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In all of  the ntm~erical experiments in which a perturbation of the form (3.2) was specified at the 
left-hand end of  the rod, it was found that perturbations of  the velocity u(x ,  t)  of  just one sign arose in 
the fractured domainxl(t)  ~ x ~ L. The fracture f rontx = Xl cuts off the negative part of  the harmonic. 
Furthermore, it is as though the fracture front, on interacting with the wave arriving from the left, reflects 
part of the positive half-wave to the left. 

The distributions ut~, t)/Uo are shown in Fig. 3 for the instants of time t/to = 0.1, 0.4,1 and at the instant of fracture 
t = if. The  distributions S = (o(x, t) - o(x, O))/Po are shown in Fig. 4 for the same instants of time. At the instant 
t = 0, a perturbatiort in the form (3.2), 0 o = -5 x 10-3P0, co = 40 is specified at the left-hand end of the bar. 
Calculations were carried out for ~t = 7.746, q = 0.5, P = Pm~- These calculations showed that when 1% I is increased 
by a factor of 10, the maximum and minimum values of o at the separation stage of the motion of the fracture 
front are of the same order as when o0 = -5 x 10-3P0: max S = -0.1. 

There is qualitative agreement between the behaviour of the quantity o(x, t) - a(x, 0) at the instant of separation 
and fracture for various values of 0o. In the interval [0, Xl,n] (xlm = 0.113 in the case under consideration), the 
difference in the stresses increases from practically zero up to the maximum value and then falls to the minimum 
value. Later, in the interval [Xl,n, 1], this difference increases to zero while oscillating at the same frequency (at 
the same frequencies co) but with different amplitudes. The amplitude of these oscillations depends on the value 
ofo0. 

When a perturbation of the form (3.1) is specified at the initial instant, the fracture front, on interacting 
with the wave travelling to the right, as in the case when a perturbation in the form (3.2) is specified 
at the left-hand end, only transmits perturbations which have a positive velocity of motion of the particles 
u. It follows from the calculations that the distributions u(x ,  t)  and  o(x ,  t)  - a(x, 0) for various forms of 
the perturbations (3.I) and (3.2) only differ slightly from one another in the case of the same o0 at the 
final stage before total fracture (separation). 
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This fact, and also the qualitative agreement between the behaviour of the quantity o(x, t) - o(x, 0) 
at the instant of  separation and fracture for different values of oo, stem from the fact that, at the final 
stage of the motion of the fracture front, the velocity of the motion of the particles of the rod and the 
change in the stresses are determined by the motion of the fracture front. At the initial stage of fracture, 
the crack propagation velocity is low and the stresses which arise and the velocity of the particles of  
the rod are determined by the motion of the perturbation wave and its interaction with the fracture 
front and the left-hand end of the rod. 

Calculations were carried out for a force P, which was less than Pmax in order to exclude the effect 
of the motion of  the fracture front on the propagation of the perturbation and the interaction of the 
perturbation with the fracture front. A perturbation in the form (3.1), o0 = -5 x 10-2P0 and o0 = -5 x 
10-2p0 was specified at the left-hand end of the rod at the instant of time t = 0 and calculations were 
carried out with t~ = 7.746, q = 0.5, P = 4P0. In this case, the coordinate of the fracture front is equal 
to xt = 0.2. 

In the case when 60 > 0, we have the following pattern. At the instant of time t = 0.2to, the perturbation 
incident on the fracture front has negative velocities of the particles and is completely reflected. The 
reflected wave then interacts with the left-hand end and, at the instant of time t = 0.6to, approaches 
the fracture front, with the particles having positive velocities. This perturbation is partially reflected 
and partially travels to the right and, when t = 1.4to, it is emitted into the domain x > L. In the case 
when 60 > 0, the fracture front is fixed and no wave subsequently appears to the right of the fracture 
front while a perturbation wave, which is completely reflected both from the fracture front and from 
the left-hand end of the rod, passes to the left of the fracture zone. 

In the case when 60 < 0, a perturbation which is incident on the fracture front at the instant of  time 
t = 0.220 has positive particle velocities. It is partially reflected and partially travels into the domain to 
the right of the fracture front. When t = to, it is emitted into the domainx > L. When 60 < 0, the fracture 
front is shifted by a small amount  into a new equilibrium position and, as in the case when 60 > 0, no 
wave subsequently appears to the right from the fracture front but a wave, which is smaller in amplitude 
than when 60 > 0, travels to the left from the fracture zone and is reflected both from the fracture 
front and from the left-hand end of the rod. 

A numerical investigation was carried out into the dependence of the overall fracture time t on the 
amplitude and the form of perturbation introduced. 

The dependence of tltt o on to is shown in Fig. 5. The values of o0 = -5 x 10-3P0, et = 7.746, q = 0.5 were adopted 
in the calculations and the dimensionless frequency to was varied from 0 to 80. Curves 1, 2 and 3 correspond to a 
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number of subdivisions N --- 1000, 1500, 5000. It is clear that the pronounced non-linearity of the problem leads 
to extremely high semitivity of the dynamic fracture process, which develops when the critical state is reached, to 
the nature of the srqMl perturbations which lead to the loss of stability. It is obvious that, for a frequency o3 = 0, 
fracture occurs solely due to the action of computational perturbations. In this case, the fracture time depends 
very much on the nmnber of subdivisions N and increases from tl/t o = 3.7 when N --- 1000 to trio = 12 when N = 
5000. In the case of non-zero values of the frequency co, perturbation from an external action, defined by formula 
(3.2), interact with the computational perturbations. The results of this interaction is also shown in Fig. 5. It is 
clear that, regardless of the number of subdivisions, frequencies exist at which the fracture time is a maximum and 
frequencies at which the fracture time is a minimum. The first global minimum in the fracture time is reached at 
the frequency o3 = 0.9 and local minima are subsequently reached at frequencies co ~ 18, co = 45, m = 72. The 
dependence of the ~kcture time on the frequency of the perturbation is mainly due to the fact that, as has already 
been mentioned above, the fracture front does not transmit small perturbations having negative velocities. 

The fracture time accompanying harmonic perturbations depends considerably on the sign of the first half-wave, 
that is, on the sign of ¢0. The curves in Fig. 5 correspond to ¢0 < 0. When a 0 > 0, the fracture times axe greater 
than when a0 < 0. 

The fracture time in the case of an external perturbation of the form of (3.1) and q0 > 0 is substantially greater 
than when there is no such perturbation (in the case of fracture from computational perturbations). 

The above analys:is has shown that, even when such a highly simplified model is used, the development 
of instability in the system after an external load of critical magnitude has been reached is extremely 
non-trivial, due to the pronounced non-linearity of the mathematical model, which contains mechan- 
isms for a fall off in strength at the instant of local fracture and dry friction in the fractured state. This 
demonstrates the need for further rigorous investigations into the process of loss of stability at the seismic 
centre using more complex models for this purpose. 

This research wa~; carried out with financial support from the International Science Foundation and 
the Russian Govenwaent (MSM300). 
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